Natural Resources - Water

WHAT’S SO SPECIAL ABOUT WATER: ABSORPTION

Activity Plan – Science Series ACTpa022

BACKGROUND

Science can be fun, as kids learn science skills along with exploring the natural world of water. They also learn how to share their observations, hypotheses, experiments, and conclusions with each other. This lesson is about the cohesive and adhesive properties of water and why water molecules are attracted to each other.

Key vocabulary words:
- **Cohesion** is the attraction of one water molecule to another. Cohesive property of water is evident in the rounded shape of the water drops on waxed paper.
- **Adhesion** is the attraction of unlike molecules. Adhesive property of water is evident in the attraction of the water molecules to the molecules of the toothpicks. The water drops are attracted to the toothpick and then absorbed by them.
- **Repel** is when water is not absorbed by the object.
- **Absorption** of water is when water becomes a part of the object and does not stand alone.
- The **atom** is the smallest unit of matter that can take part in a chemical reaction. It is the building block of matter.
- A **molecule** consists of two or more atoms chemically bonded together.

WHAT TO DO

Activity: Absorb or Repel

In this activity, first have the youth drop water onto a series of objects, such as clay, cotton, paper, plastic, rocks, sponge and waxed paper. Have the youth record what happens to the water when it reaches each object. They can sort the objects into two groups: Group 1 for items that **repel** water and Group 2 for items that **absorb** water. Repeat the activity by adding salt or soap to the water. Record the results.

Grade Levels: 3-5

Time: 10-15 minutes

Supplies Needed:
- Clay
- Cotton
- Eyedropper
- Paper
- Plastic cups
- Rocks
- Sponge
- Toothpicks
- Water
- Wax paper

Do Ahead:
- Read through this entire activity plan and perform the experiments.
- Read “Science with Kids, Science by Kids” on how to teach science to kids.

TALK IT OVER

Reflect:
- What helped you decide how to sort the objects into Group 1 or 2?
- Why do you think some objects absorb water?
- Why do you think some objects repel water?
- How did adding salt or soap to the water affect the results? Why do you think this happened?

Activity: Oh, My Stars

Tape a piece of waxed paper onto the table. Break five toothpicks in the middle but leave them connected (see image at right). Then arrange the broken toothpicks on the waxed paper to look like the spokes of a wheel (see left and center images on next page).

Next, use the eyedropper to place a few drops of water in the center of the wheel. Wait patiently to observe what happens. **Explanation:** The water formed one drop first. The water then collected around the toothpicks. The toothpicks started moving apart and formed a star (see right image on next page). The water eventually disappeared and was absorbed by the wood.
TALK IT OVER

Reflect:
• Explain what you observed during this activity.
• How did you feel when you saw the toothpicks moving apart?
• What happened to the water? Where did it go?

Apply:
• How did the toothpicks form a star? What do you think caused it?
• What are some other ways you could test your ideas about water absorption?
 (For example, to test the idea that wood absorbs water, put wooden toothpicks side-by-side with toothpicks that have been coated with wax or soaked in vegetable oil, then add water. Or try using plastic toothpicks.)

ENHANCE

Encourage youth to create other experiments to further explore what they are seeing and learning about water absorption.
• For example, “if” the toothpicks form stars because dry wooden toothpicks absorb water, expand in size, and the expansion causes the toothpicks to move, “then” you might expect moist toothpicks to behave differently. Since they’re already moist, you might predict they would not absorb as much water, not expand, and therefore not move as much as dry toothpicks.
• Using dry toothpicks, repeat this same experiment several times so more focused observations can be made.
• Try the same experiment with toothpicks using colored water to watch the absorption process.
• Use colored toothpicks to observe if they react differently than non-colored.

Do a side-by-side comparison test. Drop plain water on one group of toothpicks and water that has a couple of drops of dishwashing liquid on the other set of toothpicks. Have the youth share their observations and conclusions regarding the differences.

HELPFUL HINTS

• Coaching youth while doing these science activities is not about telling them the answers. It’s about asking open-ended questions. More importantly, it’s about getting them to ask questions that lead to experiments to test possible explanations. Then the search begins for both the teacher and the learner! It’s like teaming up to put together a puzzle. For more information about this approach to involve and engage youth in exploring science, read the “Science with Kids, Science by Kids” paper.

ADDITIONAL WEB LINKS
