

Research shows that **out of school time STEM education**, like that of 4-H, has a positive effect on developing life skills, such as **critical thinking, communication and problem solving**.

Here's something you can do to explore science

Make an Amazing Air Pressure Cup!

Watch how it's done: https://www.youtube.com/watch?v=dOnpAA3nbpE

Time required: 5 minutes

Supplies: Drinking glass Bucket Stiff paper (Manila file folder) Kleenex

Did you know?

Research shows that **out of school time STEM education**, like that of 4-H, has a positive effect on developing life skills, such as **critical thinking, communication and problem solving**.

Here's something you can do to explore science

Make an Amazing Air Pressure Cup!

Watch how it's done: https://www.youtube.com/watch?v=dOnpAA3nbpE

Time required: 5 minutes

Supplies: Drinking glass Bucket Stiff paper (Manila file folder) Kleenex

Fill a drinking glass half full of water.Hold a stiff piece of paper over the glass and hold it tight.Flip it all upside down over a bucket, holding tight – what happens?

How does it work?

There is air (atmospheric pressure) on the outside of the cup and stiff paper pushing inwards on it. The air inside the cup is a place of low air pressure while the air outside has high air pressure, because there are more molecules outside of the cup. The low pressure prevents the weight of the water from pushing the card down.

The cup doesn't slide off the paper because of surface tension and adhesion. Surface tension also holds water molecules together through attractive force, creating an elastic-like surface layer. In adhesion, water molecules are attracted to the paper, adhering to it, while continuing to keep surface tension with other water molecules.

Adapted by Anna DeMers from a lesson by Marilyn Duerst, University of Wisconsin River Falls, <u>Marilyn.d.duerst@uwrf.edu</u>

An EEO/AA employer, University of Wisconsin Extension provides equal opportunities in employment and programming, including Title IX and the Americans with
Disabilities Act (ADA) requirements.

The Experiment:

Fill a drinking glass half full of water. Hold a stiff piece of paper over the glass and hold it tight. Flip it all upside down over a bucket, holding tight – what happens?

How does it work?

There is air (atmospheric pressure) on the outside of the cup and stiff paper pushing inwards on it. The air inside the cup is a place of low air pressure while the air outside has high air pressure, because there are more molecules outside of the cup. The low pressure prevents the weight of the water from pushing the card down.

The cup doesn't slide off the paper because of surface tension and adhesion. Surface tension also holds water molecules together through attractive force, creating an elastic-like surface layer. In adhesion, water molecules are attracted to the paper, adhering to it, while continuing to keep surface tension with other water molecules.

Adapted by Anna DeMers from a lesson by Marilyn Duerst, University of Wisconsin River Falls, <u>Marilyn.d.duerst@uwrf.edu</u>

THINK LIKE A SCIENTIST!	
Observe	What do you see,
	feel, or hear?
Think	What is the purpose
	of the paper?
Apply and	What are the
Investigate	properties of water
	that cause this to
	happen?
Apply and	What happens if you
Investigate	do the experiment in
	another container?
Apply and	What happens when
Investigate	you put a small
	screen/mesh
	between the cup and
	paper?
Apply and	What happens when
Investigate	you put soap on the
	rim of the glass?

THINK LIKE A SCIENTIST!	
Observe	What do you see,
	feel, or hear?
Think	What is the purpose
	of the paper?
Apply and	What are the
Investigate	properties of water
	that cause this to
	happen?
Apply and	What happens if you
Investigate	do the experiment in
	another container?
Apply and	What happens when
Investigate	you put a small
	screen/mesh
	between the cup and
	paper?
Apply and	What happens when
Investigate	you put soap on the
	rim of the glass?

Science and Technology jobs are projected to grow by over 20% by 2020 and the top 10 college majors with the highest salary earnings are all STEM related jobs.

Here's something you can do to explore science

Make a Baby Powder Star!

Watch how it's done: https://www.youtube.com/watch?v=nK72nEjrDJE

Time required: 5 – 10 minutes

Supplies: Aluminum pie tin Toothpick Dish soap Water Baby Powder

4-H Grows Scientists You can explore science, too!

Did you know?

Science and Technology jobs are projected to grow by over 20% by 2020 and the top 10 college majors with the highest salary earnings are all STEM related jobs.

Here's something you can do to explore science

Make a Baby Powder Star!

Watch how it's done: https://www.youtube.com/watch?v=nK72nEjrDJE

Time required: 5 – 10 minutes

Supplies: Aluminum pie tin Toothpick Dish soap Water Baby Powder

Fill the aluminum pie tin ¾ full of water. Sprinkle baby powder thinly on the surface of the water. Poke a toothpick into dish soap. Poke the soapy toothpick into the center of the baby powder – what happens?

How does it work?

Water molecules hold onto each other (cohesion). Surface tension is the act of molecules (in this case water) trying to take up as little space as they can. Through this act, they are able to hold things up, like the baby powder.

When soap is added, it lowers the surface tension of the water, causing the water to expand. The water doesn't have anywhere to go in the pan, so it ruptures upwards into the baby powder.

Adapted by Anna DeMers from a lesson by Marilyn Duerst, University of Wisconsin River Falls, <u>Marilyn.d.duerst@uwrf.edu</u>

THINK LIKE A SCIENTIST!	
Observe	What do you see, feel,
	hear or smell?
Think	What is the purpose of
	the baby powder?
Think	What is the purpose of
	the soap?
Apply and	What are the properties
Investigate	of soap that cause this to
	happen?
Apply and	What happens if you do
Investigate	the experiment in another
	container?
Apply and	What other liquids can do
Investigate	what the soap does in this
	experiment?
Apply and	What else can break the
Investigate	surface tension of water?

An EEO/AA employer, University of Wisconsin Extension provides equal opportunities in employment and programming, including Title IX and the Americans with Disabilities Act (ADA) requirements.

The Experiment:

Fill the aluminum pie tin ³/₄ full of water.

Sprinkle baby powder thinly on the surface of the water. Poke a toothpick into dish soap.

Poke the soapy toothpick into the center of the baby powder – what happens?

How does it work?

Water molecules hold onto each other (cohesion). Surface tension is the act of molecules (in this case water) trying to take up as little space as they can. Through this act, they are able to hold things up, like the baby powder.

When soap is added, it lowers the surface tension of the water, causing the water to expand. The water doesn't have anywhere to go in the pan, so it ruptures upwards into the baby powder.

Adapted by Anna DeMers from a lesson by Marilyn Duerst, University of Wisconsin River Falls, <u>Marilyn.d.duerst@uwrf.edu</u>

THINK LIKE A SCIENTIST!	
Observe	What do you see, feel,
	hear or smell?
Think	What is the purpose of
	the baby powder?
Think	What is the purpose of
	the soap?
Apply and	What are the properties
Investigate	of soap that cause this to
	happen?
Apply and	What happens if you do
Investigate	the experiment in another
	container?
Apply and	What other liquids can do
Investigate	what the soap does in this
	experiment?
Apply and	What else can break the
Investigate	surface tension of water?

Youth in 4-H are 3.9 times more likely to make contributions to their communities.

Here's something you can do to explore science

Create Your Own Bee Buzzer!

Watch how it's done: https://www.youtube.com/watch?v=iGEqOM6600A

Time required: 15 minutes

Supplies:

Craft Stick Stapler 2 cap erasers Scissors 3" X 5" Index Card2 feet of string¼ Wide Rubber Band

Did you know?

Youth in 4-H are 3.9 times more likely to make contributions to their communities.

Here's something you can do to explore science

Create You Own Bee Buzzer!

Watch how it's done: https://www.youtube.com/watch?v=iGEqOM6600A

 Time required: 15 minutes

 Supplies:

 Craft Stick
 3" X 5" Index Card

 Stapler
 2 feet of string

 2 cap erasers
 ¼ Wide Rubber Band

 Scissors
 Scissors

Put one cap eraser on each end of the craft stick Trim the index card so it fits between the erasers.

Staple the card to the stick.

Tie the string to the stick next to one of the erasers using several knots to secure the string.

Stretch the rubber band around the craft stick from one eraser to the other.

Move to an open area and swing the string around. What happens?

How does it work?

When you spin the hummer (buzzer), moving air causes the rubber band to vibrate. Sound is produced by those vibrations, in the same way that vibrating strings on a guitar or violin produce sound. The sound is amplified--made louder--by the index card.

THINK LIKE A SCIENTIST!	
Observe	What do you see, feel,
	hear or smell?
Think	What is the purpose of
	the rubber band?
Think	What is the purpose of
	the index card?
Apply and	What happens if you use a
Investigate	different size or type of
	rubber band?
Apply and	What happens if you fold
Investigate	or cut the card?
Apply and	What happens if you use a
Investigate	different thickness or type
	of string?
Apply and	What other instruments
Investigate	use vibration to make a
	sound?

Adapted from a lesson by Patrick Willis, Oregon State Extension,

http://extension.oregonstate.edu/hoodriver/sites/default/files/4h/stem_activity - engineer - bee_buzzer_lesson.pdf

An EEO/AA employer, University of Wisconsin Extension provides equal opportunities in employment and programming, including Title IX and the Americans with Disabilities Act (ADA) requirements.

The Experiment:

Put one cap eraser on each end of the craft stick Trim the index card so it fits between the erasers.

Staple the card to the stick.

Tie the string to the stick next to one of the erasers using several knots to secure the string.

Stretch the rubber band around the craft stick from one eraser to the other.

Move to an open area and swing the string around. What happens?

How does it work?

When you spin the hummer (buzzer), moving air causes the rubber band to vibrate. Sound is produced by those vibrations, in the same way that vibrating strings on a guitar or violin produce sound. The sound is amplified--made louder--by the index card.

THINK LIKE A SCIENTIST!	
Observe	What do you see, feel,
	hear or smell?
Think	What is the purpose of
	the rubber band?
Think	What is the purpose of
	the index card?
Apply and	What happens if you use a
Investigate	different size or type of
	rubber band?
Apply and	What happens if you fold
Investigate	or cut the card?
Apply and	What happens if you use a
Investigate	different thickness or type
	of string?
Apply and	What other instruments
Investigate	use vibration to make a
	sound?

Adapted from a lesson by Patrick Willis, Oregon State Extension,

http://extension.oregonstate.edu/hoodriver/sites/default/files/4h/stem_activity - engineer_- bee_buzzer_lesson.pdf

Research shows that engaging youth in science and math at an early age has a positive effect on participation in science related subjects in school.

Here's something you can do to explore science

Blow up a Balloon with Carbon Dioxide (CO₂)!

Watch how it's done: https://www.youtube.com/watch?time_continue=19&v=31mNUfMgkwQ

Time required: 5 minutes	
Supplies:	
Baking soda	
Soda bottle	
Balloon	
Vinegar	

Did you know?

Research shows that engaging youth in science and math at an early age has a positive effect on participation in science related subjects in school.

Here's something you can do to explore science

Blow up a Balloon with Carbon Dioxide (CO₂)!

Watch how it's done: https://www.youtube.com/watch?time_continue=19&v=31mNUfMgkwQ

Time required: 5 minutes Supplies: Baking soda Soda bottle Balloon Vinegar

Put a good sized scoop of baking soda in a balloon.

Pour ¼ cup vinegar in the soda bottle.

Put the balloon on the soda bottle, holding it tightly so that none of the reaction escapes, while the baking soda drops into the soda bottle – what happens?

How does it work?

The acid in the acetic acid (vinegar) reacts with the sodium bicarbonate (baking soda), forming carbon dioxide (CO_2) and water (H_2O) . This is a reaction of an acid with a base. The CO_2 gas takes up a lot of space, so it inflates the balloon.

Adapted by Anna DeMers from a lesson by Marilyn Duerst, University of Wisconsin River Falls, <u>Marilyn.d.duerst@uwrf.edu</u>

THINK LIKE A SCIENTIST!	
Observe	What do you see, feel,
	hear or smell?
Think	What is the purpose of
	the baking soda?
Think	What is the purpose of
	the vinegar?
Think	How do you know that
	CO ₂ is formed?
Apply and	What happens if you do
Investigate	the experiment in another
	container, a bag for
	example?
Apply and	Are there other household
Investigate	items that can create CO ₂ ?

An EEO/AA employer, University of Wisconsin Extension provides equal opportunities in employment and programming, including Title IX and the Americans with Disabilities Act (ADA) requirements.

The Experiment:

Put a good sized scoop of baking soda in a balloon. Pour ¼ cup vinegar in the soda bottle.

Put the balloon on the soda bottle, holding it tightly so that none of the reaction escapes, while the baking soda drops into the soda bottle – what happens?

How does it work?

The acid in the acetic acid (vinegar) reacts with the sodium bicarbonate (baking soda), forming carbon dioxide (CO_2) and water (H_2O). This is a reaction of an acid with a base. The CO_2 gas takes up a lot of space, so it inflates the balloon.

Adapted by Anna DeMers from a lesson by Marilyn Duerst, University of Wisconsin River Falls, <u>Marilyn.d.duerst@uwrf.edu</u>

THINK LIKE A SCIENTIST!	
Observe	What do you see, feel,
	hear or smell?
Think	What is the purpose of
	the baking soda?
Think	What is the purpose of
	the vinegar?
Think	How do you know that
	CO ₂ is formed?
Apply and	What happens if you do
Investigate	the experiment in another
	container, a bag for
	example?
Apply and	Are there other household
Investigate	items that can create CO_2 ?

You can explore science, too!

Did you know?

80% of the **fastest growing careers** in the U.S. require science, technology and engineering literacy. Girls in **4-H** are **three times** more likely to take part in **science programs** compared to girls in other programs.

Here's something you can do to **explore science** Investigate Color Changing Milk!

Watch how it's done: https://www.youtube.com/watch?v=Hr6dZ6aWpF4

Time required: 5 minutes

Supplies: Whole Milk (one gallon will enable about 50 experiments) Food Coloring Dish Soap Styrofoam plate Cotton Swab Small cup of bowl for dish soap

4-H Grows Scientists

Did you know?

80% of the **fastest growing careers** in the U.S. require science, technology and engineering literacy. Girls in **4-H** are **three times** more likely to take part in **science programs** compared to girls in other programs.

Here's something you can do to explore science

Investigate Color Changing Milk!

Watch how it's done: https://www.youtube.com/watch?v=Hr6dZ6aWpF4

Time required: 5 minutes

Supplies: Whole Milk (one gallon will enable about 50 experiments) Food Coloring Dish Soap Styrofoam plate Cotton Swab Small cup of bowl for dish soap

Pour about 1/3 of a cup of milk onto the Styrofoam plate Carefully drip a few drops of food coloring in the center of the plate of milk. You can use multiple colors! Dip the cotton swab into the dish soap Dip the soapy swab into the center of the food coloring drop

How does it work?

Milk is mostly water but it also contains vitamins, minerals, proteins, and tiny droplets of fat suspended in solution. Dish soap, because of its bipolar characteristics (nonpolar on one end and polar on the other), weakens the chemical bonds that hold the proteins and fats in solution. The soap's polar, or *hydrophilic* (water-loving), end dissolves in water, and its hydrophabic (water faction) and attaches to a fat globulo in the

its *hydrophobic* (water-fearing) end attaches to a fat globule in the milk.

The molecules of fat bend, roll, twist, and contort in all directions as the soap molecules race around to join up with the fat

molecules. During all of this fat molecule gymnastics, the food coloring molecules are bumped and shoved everywhere, providing an easy way to observe all the invisible activity.

Adapted with permission from Steve Spangler Science (2015): <u>http://www.stevespanglerscience.com/lab/experiments/milk-color-explosion/</u>

An EEO/AA employer, University of Wisconsin Extension provides equal opportunities in employment and programming, including Title IX and the Americans with Disabilities Act (ADA) requirements.

The Experiment:

Pour about 1/3 of a cup of milk onto the Styrofoam plate Carefully drip a few drops of food coloring in the center of the plate of milk. You can use multiple colors! Dip the cotton swab into the dish soap Dip the soapy swab into the center of the food coloring drop

How does it work?

Milk is mostly water but it also contains vitamins, minerals, proteins, and tiny droplets of fat suspended in solution. Dish soap, because of its bipolar characteristics (nonpolar on one end and polar on the other), weakens the chemical bonds that hold the proteins and fats in solution. The soap's polar, or *hydrophilic* (water-loving), end dissolves in water, and its *hydrophobic* (water-fearing) end attaches to a fat globule in the milk.

The molecules of fat bend, roll, twist, and contort in all directions as the soap molecules race around to join up with the fat

THINK LIKE A SCIENTIST!	
Observe	What do you see, feel,
	hear or smell?
Think	What is the purpose of
	the food coloring?
Think	What is the purpose of
	the soap?
Apply and	How do you think using
Investigate	skim or 1% milk might
	change what you see?
Apply and	Do you think this
Investigate	experiment would work
	with soy milk?
Apply and	Olive oil also contains a
Investigate	type of fat. Do you think
	this experiment will work
	with olive oil or other oils?

molecules. During all of this fat molecule gymnastics, the food coloring molecules are bumped and shoved everywhere, providing an easy way to observe all the invisible activity.

Adapted with permission from Steve Spangler Science (2015): http://www.stevespanglerscience.com/lab/experiments/milk-color-explosion/

THINK LIKE A SCIENTIST!	
Observe	What do you see, feel,
	hear or smell?
Think	What is the purpose of
	the food coloring?
Think	What is the purpose of
	the soap?
Apply and	How do you think using
Investigate	skim or 1% milk might
	change what you see?
Apply and	Do you think this
Investigate	experiment would work
	with soy milk?
Apply and	Olive oil also contains a
Investigate	type of fat. Do you think
	this experiment will work
	with olive oil or other oils?

Youth in 4-H Science programs are **two times** more likely to participate in science and engineering programs. Science exploration is a great way to build **problem solving skills**!

Here's something you can do to explore science

Investigate Color Chromatography!

Watch how it's done: http://www.hometrainingtools.com/a/chromatography-science-project/#video

Time required: 10 minutes

Supplies: Paper towel or coffee filter Water Scissors Plastic cup Water-based black marker (do not use washable markers)

Did you know?

Youth in 4-H Science programs are **two times** more likely to participate in science and engineering programs. Science exploration is a great way to build **problem solving skills**!

Here's something you can do to explore science

Investigate Color Chromatography!

Watch how it's done: http://www.hometrainingtools.com/a/chromatography-science-project/#video

Time required: 10 minutes

Supplies: Paper towel or coffee filter Water Scissors Plastic cup Water-based black marker (do not use washable markers)

Cut a strip of paper towel or coffee filter 2" wide and 5-6" long. Using the black marker, draw a line across the paper strip that is 1 to 2" from the bottom and parallel to the bottom of the paper. Put water in the cup to just cover the bottom.

Place the paper strip in the cup with the black line closest to the bottom making sure the bottom of the strip is in the water with the black mark not touching the water.

Fold the end of the paper strip over the cup's edge.

When the water nears the top of the paper, remove the strip from the cup and let it dry on a paper plate.

How does it work?

As the water travels up the paper strip, it dissolves the ink and pulls it up the paper too. The black ink is actually a mixture of several different pigments, or coloring agents. Some pigments dissolve in water easier and are pulled with the water farther up

the paper. Others are more attracted to the paper and move more

slowly. Usually smaller molecules will move farther than larger ones. The three primary colors used when mixing dyes or paints are red, yellow, and blue. Other colors are often a mixture of these three colors.

Adapted from <u>http://www.exploratorium.edu/science_explorer/black_magic.html</u> and <u>http://www.hometrainingtools.com/a/colorful-chromatography-science-newsletter</u>

An EEO/AA employer, University of Wisconsin Extension provides equal opportunities in employment and programming, including Title IX and the Americans with Disabilities Act (ADA) requirements.

The Experiment:

Cut a strip of paper towel or coffee filter 2" wide and 5-6" long. Using the black marker, draw a line across the paper strip that is 1 to 2" from the bottom and parallel to the bottom of the paper. Put water in the cup to just cover the bottom.

Place the paper strip in the cup with the black line closest to the bottom making sure the bottom of the strip is in the water with the black mark not touching the water.

Fold the end of the paper strip over the cup's edge.

When the water nears the top of the paper, remove the strip from the cup and let it dry on a paper plate.

How does it work?

As the water travels up the paper strip, it dissolves the ink and pulls it up the paper too. The black ink is actually a mixture of several different pigments, or coloring agents. Some pigments dissolve in water easier and are pulled with the water farther up the paper. Others are more attracted to the paper and move more

THINK LIKE A SCIENTIST!	
Observe	What do you see, feel,
	hear or smell?
Think	What is chromatography?
Think	What made the water
	move up the paper?
Apply and	What happened when the
Investigate	water reached the black
	line?
Apply and	Why does mixing many
Investigate	colors of ink make black?
Apply and	What happens if you use a
Investigate	brown, purple or orange
	marker?
Apply and	If you use a clean filter
Investigate	and a different marker, do
	you get the same results?

slowly. Usually smaller molecules will move farther than larger ones. The three primary colors used when mixing dyes or paints are red, yellow, and blue. Other colors are often a mixture of these three colors.

Adapted from <u>http://www.exploratorium.edu/science_explorer/black_magic.html</u> and <u>http://www.hometrainingtools.com/a/colorful-chromatography-science-newsletter</u>

THINK LIKE A SCIENTIST!	
Observe	What do you see, feel,
	hear or smell?
Think	What is chromatography?
Think	What made the water
	move up the paper?
Apply and	What happened when the
Investigate	water reached the black
	line?
Apply and	Why does mixing many
Investigate	colors of ink make black?
Apply and	What happens if you use a
Investigate	brown, purple or orange
	marker?
Apply and	If you use a clean filter
Investigate	and a different marker, do
	you get the same results?

Youth in 4-H Science programs are **two times** more likely to participate in science and engineering programs. Science exploration is a great way to build **problem solving skills**!

Here's something you can do to **explore science Create Your Own Hand Warmer!**

Time required: 5 minutes once you have the water gel crystals prepared.

Supplies:

Prepared jelly crystals (also called water beads found in gardening section of stores or at Stevespangler.com) Calcium chloride or ice melt salt (must be calcium chloride pellets/-25 degree melt) Two zipper bags per experiment

Do this before the lesson: Prepare the jelly crystals: 1.5 cups of water to 1 tablespoon of jelly crystals. Wait for all the water to be absorbed (20 min.). The prepared crystals can be stored in a zipper bag for months.

4-H Grows Scientists You can explore science, too!

Did you know?

Youth in 4-H Science programs are **two times** more likely to participate in science and engineering programs. Science exploration is a great way to build **problem solving skills**!

Here's something you can do to explore science

Create Your Own Hand Warmer!

Time required: 5 minutes once you have the water gel crystals prepared.

Supplies:

Prepared jelly crystals (also called water beads found in gardening section of stores or at Stevespangler.com) Calcium chloride or ice melt salt (must be calcium chloride pellets/-25 degree melt) Two zipper bags per experiment

Do this before the lesson: Prepare the jelly crystals: 1.5 cups of water to 1 tablespoon of jelly crystals. Wait for all the water to be absorbed (20 min.). The prepared crystals can be stored in a zipper bag for months.

3 tablespoons of prepared jelly crystals into a zipper bag Add 1 tablespoons of calcium chloride or ice melt Make sure the bag is sealed Place the mixture bag into another zipper bag Seal the zipper bag Mix the contents by squishing the bags with your fingers

How does it work?

The heat is a byproduct of the chemical reaction between the salt and water (locked inside the jelly crystals). The reaction is therefore called exothermic (exo – means out and -thermic means heat). At some point the reaction will be completed and the hand warmer will stop producing heat. The salt and water will produce heat on its own; however, adding water in the form of jelly crystals will keep the hand warmer from getting too hot to handle and slow the reaction so that the hand warmer stays warmer longer. *Adapted with permission from Steve Spangler Science (2015):*

THINK LIKE A SCIENTIST!	
Observe	What do you see, feel,
	hear or smell?
Think	What is the purpose of
	the jelly crystals?
Think	What is the purpose of
	the salt?
Apply and	How do you think adding
Investigate	more salt might affect
	how long the hand
	warmer stays warm?
Apply and	Have you ever used other
Investigate	types of hand warmers?
	How do they work?
Apply and	What happens to the jelly
Investigate	crystals after about an
	hour?
Apply and	Can you add calcium
Investigate	chloride to water and see
	the same reaction?

http://www.stevespanglerscience.com/lab/experiments/homemade-hand-warmer/

An EEO/AA employer, University of Wisconsin-Extension provides equal opportunities in employment and programming, including Title IX and the Americans with Disabilities Act (ADA) requirements.

The Experiment:

3 tablespoons of prepared jelly crystals into a zipper bag Add 1 tablespoons of calcium chloride or ice melt Make sure the bag is sealed Place the mixture bag into another zipper bag Seal the zipper bag Mix the contents by squishing the bags with your fingers

How does it work?

The heat is a byproduct of the chemical reaction between the salt and water (locked inside the jelly crystals). The reaction is therefore called exothermic (exo – means out and -thermic means heat). At some point the reaction will be completed and the hand warmer will stop producing heat. The salt and water will produce heat on its own; however, adding water in the form of jelly crystals will keep the hand warmer from getting too hot to handle and slow the reaction so that the hand warmer stays warmer longer. *Adapted with permission from Steve Spangler Science (2015):*

THINK LIKE A SCIENTIST!	
Observe	What do you see, feel,
	hear or smell?
Think	What is the purpose of
	the jelly crystals?
Think	What is the purpose of
	the salt?
Apply and	How do you think adding
Investigate	more salt might affect
	how long the hand
	warmer stays warm?
Apply and	Have you ever used other
Investigate	types of hand warmers?
	How do they work?
Apply and	What happens to the jelly
Investigate	crystals after about an
	hour?
Apply and	Can you add calcium
Investigate	chloride to water and see
	the same reaction?

http://www.stevespanglerscience.com/lab/experiments/homemade-hand-warmer/

You can explore science, too!

Did you know?

80% of the **fastest growing careers** in the U.S. require science, technology and engineering literacy. Girls in **4-H** are **three times** more likely to take part in **science programs** compared to girls in other programs.

Here's something you can do to explore science

Create Oxygen in a Bag!

Watch how it's done: https://www.youtube.com/watch?v=S29upvX4rrE

Time required: 5 – 10 minutes

Supplies: Dry yeast powder Food coloring Zipper plastic bag 3% hydrogen peroxide

4-H Grows Scientists

You can explore science, too!

Did you know?

80% of the **fastest growing careers** in the U.S. require science, technology and engineering literacy. Girls in **4-H** are **three times** more likely to take part in **science programs** compared to girls in other programs.

Here's something you can do to explore science

Create Oxygen in a Bag!

Watch how it's done: https://www.youtube.com/watch?v=S29upvX4rrE

Time required: 5 – 10 minutes

- Supplies:
- Dry yeast powder
- Food coloring
- Zipper plastic bag
- 3% hydrogen peroxide (H₂O₂)

Put about ½ tsp. of dry yeast powder in a zipper plastic bag. Add a drop of food coloring.

Pour in about 1 tbsp. of the hydrogen peroxide and zip it up – what happens?

How does it work?

The yeast catalyzes (speeds up) the release the oxygen molecules that are contained in the hydrogen peroxide. This is called decomposition as the hydrogen peroxide breaks down into its two components: water and oxygen. As the oxygen is released, the air fills up the bag. As the bonds between the oxygen and water break, they also release energy in the form of heat.

Adapted by Anna DeMers from a lesson by Marilyn Duerst, University of Wisconsin River Falls, <u>Marilyn.d.duerst@uwrf.edu</u>

THINK LIKE A SCIENTIST!	
Observe	What do you see, feel, or hear?
Think	What is the purpose of the hydrogen peroxide?
Think	What is the purpose of the yeast?
Apply and	What are the properties
Investigate	of the yeast that cause
	this to happen?
Apply and	If you do this in a test
Investigate	tube, how could you test
	to see if oxygen was
	released?
Apply and	What happens if you do
Investigate	the experiment again with
	a little bit of liquid soap in
	the bag?

An EEO/AA employer, University of Wisconsin Extension provides equal opportunities in employment and programming, including Title IX and the Americans with Disabilities Act (ADA) requirements.

The Experiment:

Put about ½ tsp of dry yeast powder in a zip lock bag. Add a drop of food coloring. Pour in about 1 T of the hydrogen peroxide and zip it up – what happens?

How does it work?

The yeast catalyzes (speeds up) the release the oxygen molecules that are contained in the hydrogen peroxide. This is called decomposition as the hydrogen peroxide breaks down into its two components: water and oxygen. As the oxygen is released, the air fills up the bag. As the bonds between the oxygen and water break, they also release energy in the form of heat.

Adapted by Anna DeMers from a lesson by Marilyn Duerst, University of Wisconsin River Falls, <u>Marilyn.d.duerst@uwrf.edu</u>

THINK LIKE A SCIENTIST!	
Observe	What do you see, feel, or hear?
Think	What is the purpose of the hydrogen peroxide?
Think	What is the purpose of the yeast?
Apply and	What are the properties
Investigate	of the yeast that cause
	this to happen?
Apply and	If you do this in a test
Investigate	tube, how could you test
	to see if oxygen was
	released?
Apply and	What happens if you do
Investigate	the experiment again with
	a little bit of liquid soap in
	the bag?

4-H Grows Scientists

You can explore science, too!

Did you know?

Science and Technology jobs are projected to grow by over 20% by 2020 and the top 10 college majors with the highest salary earnings are all STEM related jobs.

Youth in 4-H Science programs are **two times** more likely to participate in science and engineering programs. Science exploration is a great way to build **problem solving skills**!

Here's something you can do to explore science

Skewer a Balloon!

Watch how it's done: https://www.youtube.com/watch?v=LO8OGkhsX6M

Time required: 5 minutes

Supplies: Balloon Oil or water Wooden Skewer

Did you know?

Science and Technology jobs are projected to grow by over 20% by 2020 and the top 10 college majors with the highest salary earnings are all STEM related jobs.

Youth in 4-H Science programs are **two times** more likely to participate in science and engineering programs. Science exploration is a great way to build **problem solving skills**!

Here's something you can do to explore science

Skewer a Balloon!

Watch how it's done: https://www.youtube.com/watch?v=LO8OGkhsX6M

Time required: 5 minutes

Supplies:

Balloon

Oil or water

Wooden Skewer

Blow up a balloon (not absolutely full), and tie it. Take a wood skewer and cover all of it in oil (or water if you have no oil).

Push fairly hard into an end of the balloon where the rubber isn't stretched as much and wiggle a little.

Push the skewer through the other end of the balloon where it isn't stretched as much – Does it pop?

How does it work?

You have put the skewer through the balloon at an area where there is not much stress on the rubber molecules. Rubber is made up of long chains of molecules called polymers. The elasticity of these chains is what causes rubber to stretch.

When you skewer the balloon, the polymer chains stretch around the skewer and keep the air inside from coming out the hole.

Observe	What do you see, feel, or hear?
Think	What is the purpose of the oil?
Apply and Investigate	What are the properties of oil that cause this to happen?
Apply and Investigate	What happens if you don't put oil on the skewer?
Apply and Investigate	What happens when you take the skewer out of the balloon?
Apply and Investigate	What happens if you try to skewer the balloon where it is stretched a lot?

THINK LIKE A SCIENTIST!

Adapted by Anna DeMers from a lesson by Marilyn Duerst, University of Wisconsin River Falls, Marilyn.d.duerst@uwrf.edu

An EEO/AA employer, University of Wisconsin Extension provides equal opportunities in employment and programming, including Title IX and the Americans with Disabilities Act (ADA) requirements.

The Experiment:

Blow up a balloon (not absolutely full), and tie it.

Take a wood skewer and cover all of it in oil (or water if you have no oil).

Push fairly hard into an end of the balloon where the rubber isn't stretched as much and wiggle a little.

Push the skewer through the other end of the balloon where it isn't stretched as much – Does it pop?

How does it work?

You have put the skewer through the balloon at an area where there is not much stress on the rubber molecules. Rubber is made up of long chains of molecules called polymers. The elasticity of these chains is what causes rubber to stretch.

When you skewer the balloon, the polymer chains stretch around the skewer and keep the air inside from coming out the hole.

THINK LIKE A SCIENTIST!	
Observe	What do you see, feel, or
	hear?
Think	What is the purpose of
	the oil?
Apply and	What are the properties
Investigate	of oil that cause this to
	happen?
Apply and	What happens if you don't
Investigate	put oil on the skewer?
Apply and	What happens when you
Investigate	take the skewer out of the
	balloon?
Apply and	What happens if you try
Investigate	to skewer the balloon
	where it is stretched a lot?

Adapted by Anna DeMers from a lesson by Marilyn Duerst, University of Wisconsin River Falls, Marilyn.d.duerst@uwrf.edu